Visual DialogScript

Introduction

Visual Dialog script started out as batch file language similar to that used in MS-DOS but native to windows.

	Since then it has evolved well beyond its original design. It is now capable of creating EXE files that can produce Dialog windows with multimedia content. It can also access windows shell and MCI commands and produce windows message boxes, both of which will be covered later in the course. It also has network extension and the possibility of almost unlimited further extensions.

	VDS can be used for a huge variety of things such as installation programmes, simple utilities, to automate functions on boot up and for windows front ends for older DOS programmes. It can also be used to control other windows programmes and to write small applications.	

VDS

The Elements of VDS

Commands

Commands consist of a command name followed by a string used as an argument or parameter. A string is basically a short piece of text. Strings will be discussed in more detail when we consider other elements of VDS.

If a command has more then one parameter they are separated by a comma.

A space must separate the command from its parameters.

Examples

Title My Prog

the command is shown in bold and the parameter in italics. This is not necessary when writing programmes.

INFO An info box

again the command is shown in bold and the parameter in italics.

Strings may include variables and functions.

Functions

Functions start with an @ sign which is followed by the name of the function. A functions arguments are enclosed in parentheses (Bracket like those surrounding this comment)

Example

@Curdir() 	Note there is no arguments in this function but the brackets are still there.

This function returns the current directory of a specified drive. If none are specified then it will return the directory in which the programme is running.

Functions are generally used to assign or process variables. e.g.

%I = @curdir()

%I is a variable and contains the directory which the programme is running in.

Variables

Variables are used to store short alphanumeric strings or pure numbers while the programme is running and are denoted by a % sign follows by the 1-9 or A-Z.

%1-9 are used like the command line parameters of batch files. This means that for example you create a programme that finds the square root of a number you could write it so that when you run it you type:

Sqr.exe 9

where Sqr.exe is the programme and 9 is the number you want to find the square root of. When the programme is run like this the number 9 is assigned to variable %1. If it way run as:

Sqr.exe 9 25

9 would be assigned to %1

25 would be assigned to %2

and so on....

Special Note:

%0 is a read-only variable which contains the full path of the programme.

The maximum length of a variable is 255 characters (including spaces).

Please note that functions are denoted by the @ sign and variables by the % sign so these symbols should not be used in strings. If they are necessary they should be enclosed in double quotation marks (" ")

Example

Email: me"@"somewhare.com

Labels

Labels are used as targets for other commands. They start with a colon (:) which is followed by the labels name (which can be virtually anything).

They are used to change the order in which a script to executed.

Example

:Label

this is a label called Label

The Development Environment

To begin to learn how to use this environment several tutorial written by the author have been included. We will also use these to learn some of the basic commands.

Click on the help menu and select “Tutorial”.

Then when the window appears select Lesson one and follow the instructions. To progress to the next page of the tutorial click the >> Button.

Once you have completed lesson one move on to lesson two.

Lesson two will introduce the idea of variables and how they are used in Visual Dialog script. Once you have done this lesson make sure you go through each line of code and make sure you understand exactly what’s going on. If there are any commands or functions you think have not been fully explained then click on the button furthest to the right of the tool bar and type the command name or function in the box and it will go to the appropriate section of the help file.

The Dialog Editor

We know have a working understanding of the Visual DialogScript language. We will now move on to the visual side of VDS the Dialog.

To learn how to use the Dialog editor we will do lesson three of the tutorial. It will also introduce us to some more commands and functions associated with visual side of this programme.

You should now understand the following things:-

(The different elements of VDS (Variables, Commands, Functions, Labels and some visual Dialog)

(The following commands: Title, INFO, WARN, Repeat, Until, Goto, IF, END, EXIT and Wait.

(The use of the development environment including the Dialog editor.

(The following functions: @input(), @succ(), @null(), @Event(), @equal() and @datetime()

I now suggest that we go through each of these variable and functions and learn what other thing each does. This can be done best by looking for their section in the help file.

It would also be a good time to learn the commands associated with the Dialog section of this language. Do a search in the help file for DIALOG. Some commands will not make a lot of sense yet but will soon become clearer.

There is still one main element of VDS as yet unmentioned and that is String lists. These can be considered as an array of variable. They can be used to held entire text files. In this case each line of the text file is assigned to a separate item in the list.

Example

List 1,Create (this creates a list called 1)

List 1,Loadfile,c:\dummy.txt

say dummy.txt look like this:-

one

two

three

four

then the first item in the list would contain the string “one” the second item “two” and so on.

To learn how to use lists we will turn to an example in the normal help file. Do a search for examples. Select this and then select “list”. To avoid having to do lots of typing I have included all example scripts with this tutorial. This script is called list.dsc.

In this case the list is visible (They don’t have to be) and is called LB. Now run the programme using the run button.

A dialog will appear with 6 buttons on the right and a list box on the left.

The list when created was give the argument “CLICK” this generates a click event every time a list item is selected. This triggers the @event() function to goto a label called lbclick (the event name generated is the name of the control (in this case the list is called LB) followed by the word click). The code contained under the lbclick label tells the programme to goto the label loop. The code following the loop label uses the DIALOG command set to change the contents of the status bar at the bottom of the dialog to contain the number of the item clicked on and the item itself unless the index equal -1 which has no item. The @event() function is then called to make the programme wait until another event is generated.

The top button entitled Add when clicked produces a input box (@input function). The contents of the box is then passed to a variable. The list command “Add” is then used to place the contents of the variable to the bottom of the list.

The next button down removes the selected item from the list.

The match button uses the IF command to tell if any item in the list contains the string entered in an input box. In fact it uses the IF command and this list function @match() to tell if none of the list items contain the string. If the string is found in one of the items the programme will stop looking and focus will be on that item. Please note that this function will only match with the first item it comes across that contains the appropriate string. Any other items which contain the string will not be found.

Commands and Functions

Flow Control

These are some of the command and functions that are used to divert the flow of scripts.

GOTO <label>		This will divert flow to the named label.

GOSUB <label> 		This will also divert flow to the named label but flow will be

go back to the line after the GOSUB if an EXIT command is encountered.

EXIT				This will revert flow to the line after the gosub command or

if no gosub was issued the script will terminate.

BREAK			sets a break point which terminates a programme at that

point. Break points should only be used in when debugging.

OPTION ERRORTRAP <label>

				This sets the script to goto the named label if an error

 				occurs.

REPEAT…

UNTIL <String>		repeats code on following lines until the <string> is satisfied

 				e.g. until @equal(%a,1). Carries on until the variable %a =1

STOP				Will terminate a script unconditionally (even when gosub

has been called)

WAIT	<interval>			 This does not really effect the flow but it causes the

 script to wait for <interval> seconds.

WAIT EVENT <interval>		The same as wait but will wait indefinitely until an

event occurs then the script will wait <interval> seconds.

Maths in VDS

VDS does not understand standard maths. For example if you where to write:

%I = 1 + 5

The contents of %I would be 1 + 5 not as you would expect 6.

For this reason there are a number of mathematical functions in Visual DialogScript.

These can be found by doing a search for “mathematical functions” in the help file.

They also include functions for floating point numbers.

Controlling other programmes with VDS

VDS contains a command set for controlling other windows programmes. Most notable is the WINDOW command. This has a great many different uses including sending key strokes to other programmes and sending mouse clicks to the as well. It can even be used to set the title bar of the other programmes!

There are also functions for this for example the @winatpoint() function can be used to select controls of other programmes so that that control can be the focus of subsequent window commands. If you look in the help file almost all the functions that relate to controlling windows programmes star with @win… The exception being @windir which we will be covering later. There is also a script included which is used to control notepad.

It is called notepad.dsc.

Files and Directories

VDS also has an extensive library of commands and function for file manipulation.

Two very useful functions are:

@Windir()			This returns the full path that windows resides in.

@curdir(drive)		This returns the full path of the current directory in the drive

specified. If no drive is specified the full path of the programme is returned. This is different to the path in %0 as it does not contain that name of the programme, just the path.

There are two other commands which are used for file and directory management, they are FILE and DIRECTORY. DIRECTORY can be used to create, delete and change directory. FILE is used to copy, delete, rename, set the date and set the attributes of files.

Another set of functions should be mentioned in the section. That is @Dirdlg() and @Filedlg(). Both display a windows common dialog boxes. @filedlg() returns a string containing the path and filename of the selected file. @dirdlg() return the selected directory name and path. Both have various flags to control the contents of the box which appears.

Example

%I = @Filedlg(“ASCII File (*.TXT))

This will bring up the file dialog box which will display only files with the extension .TXT which in this case have been given the description ASCII File.

The MCI Interface

MCI stands for multimedia control interface. This is a feature of windows not VDS. VDS does however allow you access to this feature.

The best way to learn how to use the MCI command is to try it out so included are two more scripts by Julian Moss which demonstrate the use of the MCI.

First is a script I have named mciplay.dsc. This programme also is a good example of a drag and drop dialog, it allows the users to drag wav, mid, and avi files onto the dialog and drop them. They will then be loaded and played. Read the script carefully to make sure you understand how it works.

The second script is more of a tool than an example. It allows you test MCI commands before putting them into your script. The script is in the file mcitest.dsc.

I hope to add some more information on the MCI but am still in the process of collecting it.

The command “Play” can also be used to play Wav files. It is not an MCI command but part of the VDS language.

Windows Shell Commands

Windows has its own set of built in commands called shell operations. Shell operations are defined for each file type in the Windows Registry. They are the operations like Open and Print which you see listed at the top of the popup menu you get when you right-click on a file.

There are several operations and many arguments to the shell command which can again be found in the help file under “shell”.

The Command RUN and similar commands like RUNZ can be used to execute programmes rather than using shell operations.

The Windows Clipboard

VDS includes a command set for manipulating the clipboard. The command is CLIPBOARD and it can have the following arguments:-

CLEAR		This clears the contents of the clipboard

SET, <string>		This places <string> in the clipboard

APPEND, <string> This adds <string> to text already in the clipboard

Inifiles

Inifiles can be used by VDS. There is one command and one function for this. The command INIFILE can be used with the following arguments:-

OPEN, <inifile name>		this opens the named inifile

WRITE, <section name>, <key name>, <string>	This places <string> in the place

 				specified in section name.

Example

Inifile open, dummy.ini

inifile write, People, Name, Jonathan

When opened in a text editor you would see the following:-

[People]

Name = Jonathan

The @iniread(<section name>,<key name>) function is used to return the value of <key name> in the <section name> named.

Note that the inifile open command must have been used first to open the inifile.

The inifile only stays open as long as it is read or written to. As a result there is no close command.

DDE commands

I know very little about DDE commands except that it stand for Dynamic Device Exchange. First is DDEtest.dsc which make a list of all the groups (in this case in progman) present. The second DDEmake.dsc is used to make a progman entry.

Again I hope to add to this section at a later date.

Options

Dialogs can have a set of option defined by the OPTION command.

These include error trapping and priority of the programme.

For fuller details refer to the help file under OPTION.

Styles

Styles are used we a dialog is present. In there simplest form they can be used to define and font and colour for other dialog elements such as edit boxes. This is done by selecting the style item in the dialog editor. You choose your options and then press OK. After this when you add an item that you want to have the defined style you go to the bottom of the element editor window and select it from the styles box.

There are other style such as “click” which can be found in the styles box for pictures and lists. This if chosen will cause a click event when the mouse is clicked on it. By adding the click style to a picture it can be used like a button. The style hand and cross also do the same thing except that hand causes the cursor to change to a hand when it goes across the picture and cross causes it to change to a cross. Pictures also have the style stretch. This means that the bitmap will stretch to fit the control.

Edit boxes have the style PASSWORD. This means that all text entered in the box appears as *’s. There are many other styles available. To find out what the do you can click on the help button in the dialog editor and it will tell you about styles that are relevant to the control.

Dialog Types

When creating a dialog you can also select to make a specific dialog type. This is done by adding a dialog type item. These have no control names and on have styles which include:-

DragDrop			This produces a dialog which excepts drag and drop

procedures.

Nosys				The dialog will have no system boxes at the top

Nomin				The dialog cannot be minimized

Ontop				The dialog will remain on top of all other windows

Savepos			The dialog will remember where it was when it closed and

will when run again appear in the same place

Smallcaps			The system boxes will be very small

This concludes our brief tour of Visual Dialog Script	. I hope that this short course has helped you understand how you can use vds to get the most out of your computer.

There is great deal more to VDS than is covered here, If you want to learn more go away a experiment a little.

For more information and add-ons for VDS visit:

The JM-Technologies web page: http://www.jm-tech.com

or

The Visual DialogScript Home page http://www.geocities.com/SiliconValley/Bay/1162/

To contact me please email me at Chris.moss@zetnet.co.uk	

